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Exercise 1.4.11

Suppose ∂u
∂t = ∂2u

∂x2 + x, u(x, 0) = f(x), ∂u
∂x(0, t) = β, ∂u

∂x(L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a function of time).

(b) From part (a), determine a value of β for which an equilibrium exists. For this value of β,
determine lim

t→∞
u(x, t).

Solution

Part (a)

The governing equation for the rod’s temperature u is

∂u

∂t
=

∂2u

∂x2
+ x.

Comparing this to the general form of the heat equation, we see that the mass density ρ and
specific heat c are equal to 1 and that the heat source is Q = x. The thermal energy density e is
ρcu = u, so the left side can be written in terms of e.

∂e

∂t
=

∂2u

∂x2
+ x

To obtain the total thermal energy in the rod, integrate both sides over the rod’s volume V .

�
V

∂e

∂t
dV =

�
V

(
∂2u

∂x2
+ x

)
dV

Bring the time derivative in front of the volume integral on the left.

d

dt

�
V
e dV =

�
V

(
∂2u

∂x2
+ x

)
dV

The volume integral on the left represents the total thermal energy in the rod, and that’s what we
intend to solve for. The rod has a constant cross-sectional area A, so the volume differential is
dV = Adx. The volume integral on the right side will be replaced by one over the rod’s length.

d

dt

�
V
e dV =

� L

0

(
∂2u

∂x2
+ x

)
Adx

= A

(� L

0

∂2u

∂x2
dx+

� L

0
x dx

)
= A

(
∂u

∂x

∣∣∣∣L
0

+
L2

2

)
= A

[
∂u

∂x
(L, t)︸ ︷︷ ︸
= 7

− ∂u

∂x
(0, t)︸ ︷︷ ︸
= β

+
L2

2

]

= A

(
7− β +

L2

2

)
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Integrate both sides with respect to t.

�
V
e dV = A

(
7− β +

L2

2

)
t+ U0

The constant of integration U0 is the initial thermal energy in the rod. In order to determine it,
we will make use of the initial condition u(x, 0) = f(x). Change e back in terms of u and write
dV = Adx. � L

0
u(x, t)Adx = A

(
7− β +

L2

2

)
t+ U0

Bring A in front of the integral and set t = 0 in the equation.

A

� L

0
u(x, 0) dx = U0

Use the initial condition.

A

� L

0
f(x) dx = U0

Therefore, the thermal energy in the rod as a function of time is

�
V
e dV = A

(
7− β +

L2

2

)
t+A

� L

0
f(x) dx.

Part (b)

Equilibrium can only occur if the thermal energy in the rod is constant. This happens if

7− β +
L2

2
= 0 → β = 7 +

L2

2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 =
d2u

dx2
+ x → d2u

dx2
= −x

This differential equation can be solved by integrating both sides with respect to x twice. After
the first integration, we get

du

dx
= −x2

2
+ C1.

Apply the boundary conditions here to determine C1.

du

dx
(0) = C1 = β

du

dx
(L) = −L2

2
+ C1 = 7 → C1 = 7 +

L2

2

So then
du

dx
= −x2

2
+ 7 +

L2

2
.

Integrate both sides with respect to x a second time.

u(x) = −x3

6
+

(
7 +

L2

2

)
x+ C2
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The result from part (a) will be used to determine C2. If β = 7 + L2/2, then it simplifies to

�
V
e dV = A

� L

0
f(x) dx.

Change e back to u and dV to Adx.

� L

0
u(x, t)Adx = A

� L

0
f(x) dx

Divide both sides by A and then set t = ∞.

� L

0
u(x,∞) dx =

� L

0
f(x) dx

Substitute the equilibrium temperature for u(x,∞).

� L

0

[
−x3

6
+

(
7 +

L2

2

)
x+ C2

]
dx =

� L

0
f(x) dx

We now have an equation for C2. Evaluate the integral on the left side.

−L4

24
+

(
7 +

L2

2

)
L2

2
+ C2L =

� L

0
f(x) dx

Simplify the left side.
5L4

24
+

7L2

2
+ C2L =

� L

0
f(x) dx

So we have

C2 = −5L3

24
− 7L

2
+

1

L

� L

0
f(x) dx.

Therefore, assuming β = 7 + L2/2, the equilibrium temperature distribution is

u(x) = −x3

6
+

(
7 +

L2

2

)
x− 5L3

24
− 7L

2
+

1

L

� L

0
f(x) dx.
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