Exercise 1.4.11

Suppose $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x, u(x, 0)=f(x), \frac{\partial u}{\partial x}(0, t)=\beta, \frac{\partial u}{\partial x}(L, t)=7$.
(a) Calculate the total thermal energy in the one-dimensional rod (as a function of time).
(b) From part (a), determine a value of β for which an equilibrium exists. For this value of β, determine $\lim _{t \rightarrow \infty} u(x, t)$.

Solution

Part (a)

The governing equation for the rod's temperature u is

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x .
$$

Comparing this to the general form of the heat equation, we see that the mass density ρ and specific heat c are equal to 1 and that the heat source is $Q=x$. The thermal energy density e is $\rho c u=u$, so the left side can be written in terms of e.

$$
\frac{\partial e}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x
$$

To obtain the total thermal energy in the rod, integrate both sides over the rod's volume V.

$$
\int_{V} \frac{\partial e}{\partial t} d V=\int_{V}\left(\frac{\partial^{2} u}{\partial x^{2}}+x\right) d V
$$

Bring the time derivative in front of the volume integral on the left.

$$
\frac{d}{d t} \int_{V} e d V=\int_{V}\left(\frac{\partial^{2} u}{\partial x^{2}}+x\right) d V
$$

The volume integral on the left represents the total thermal energy in the rod, and that's what we intend to solve for. The rod has a constant cross-sectional area A, so the volume differential is $d V=A d x$. The volume integral on the right side will be replaced by one over the rod's length.

$$
\begin{aligned}
\frac{d}{d t} \int_{V} e d V & =\int_{0}^{L}\left(\frac{\partial^{2} u}{\partial x^{2}}+x\right) A d x \\
& =A\left(\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} d x+\int_{0}^{L} x d x\right) \\
& =A\left(\left.\frac{\partial u}{\partial x}\right|_{0} ^{L}+\frac{L^{2}}{2}\right) \\
& =A[\underbrace{\frac{\partial u}{\partial x}(L, t)}_{=7}-\underbrace{\frac{\partial u}{\partial x}(0, t)}_{=\beta}+\frac{L^{2}}{2}] \\
& =A\left(7-\beta+\frac{L^{2}}{2}\right)
\end{aligned}
$$

Integrate both sides with respect to t.

$$
\int_{V} e d V=A\left(7-\beta+\frac{L^{2}}{2}\right) t+U_{0}
$$

The constant of integration U_{0} is the initial thermal energy in the rod. In order to determine it, we will make use of the initial condition $u(x, 0)=f(x)$. Change e back in terms of u and write $d V=A d x$.

$$
\int_{0}^{L} u(x, t) A d x=A\left(7-\beta+\frac{L^{2}}{2}\right) t+U_{0}
$$

Bring A in front of the integral and set $t=0$ in the equation.

$$
A \int_{0}^{L} u(x, 0) d x=U_{0}
$$

Use the initial condition.

$$
A \int_{0}^{L} f(x) d x=U_{0}
$$

Therefore, the thermal energy in the rod as a function of time is

$$
\int_{V} e d V=A\left(7-\beta+\frac{L^{2}}{2}\right) t+A \int_{0}^{L} f(x) d x
$$

Part (b)
Equilibrium can only occur if the thermal energy in the rod is constant. This happens if

$$
7-\beta+\frac{L^{2}}{2}=0 \quad \rightarrow \quad \beta=7+\frac{L^{2}}{2} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=\frac{d^{2} u}{d x^{2}}+x \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=-x
$$

This differential equation can be solved by integrating both sides with respect to x twice. After the first integration, we get

$$
\frac{d u}{d x}=-\frac{x^{2}}{2}+C_{1} .
$$

Apply the boundary conditions here to determine C_{1}.

$$
\begin{aligned}
& \frac{d u}{d x}(0)=C_{1}=\beta \\
& \frac{d u}{d x}(L)=-\frac{L^{2}}{2}+C_{1}=7 \quad \rightarrow \quad C_{1}=7+\frac{L^{2}}{2}
\end{aligned}
$$

So then

$$
\frac{d u}{d x}=-\frac{x^{2}}{2}+7+\frac{L^{2}}{2} .
$$

Integrate both sides with respect to x a second time.

$$
u(x)=-\frac{x^{3}}{6}+\left(7+\frac{L^{2}}{2}\right) x+C_{2}
$$

The result from part (a) will be used to determine C_{2}. If $\beta=7+L^{2} / 2$, then it simplifies to

$$
\int_{V} e d V=A \int_{0}^{L} f(x) d x
$$

Change e back to u and $d V$ to $A d x$.

$$
\int_{0}^{L} u(x, t) A d x=A \int_{0}^{L} f(x) d x
$$

Divide both sides by A and then set $t=\infty$.

$$
\int_{0}^{L} u(x, \infty) d x=\int_{0}^{L} f(x) d x
$$

Substitute the equilibrium temperature for $u(x, \infty)$.

$$
\int_{0}^{L}\left[-\frac{x^{3}}{6}+\left(7+\frac{L^{2}}{2}\right) x+C_{2}\right] d x=\int_{0}^{L} f(x) d x
$$

We now have an equation for C_{2}. Evaluate the integral on the left side.

$$
-\frac{L^{4}}{24}+\left(7+\frac{L^{2}}{2}\right) \frac{L^{2}}{2}+C_{2} L=\int_{0}^{L} f(x) d x
$$

Simplify the left side.

$$
\frac{5 L^{4}}{24}+\frac{7 L^{2}}{2}+C_{2} L=\int_{0}^{L} f(x) d x
$$

So we have

$$
C_{2}=-\frac{5 L^{3}}{24}-\frac{7 L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x
$$

Therefore, assuming $\beta=7+L^{2} / 2$, the equilibrium temperature distribution is

$$
u(x)=-\frac{x^{3}}{6}+\left(7+\frac{L^{2}}{2}\right) x-\frac{5 L^{3}}{24}-\frac{7 L}{2}+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

